打开电脑
启动Mathematica
制作蝴蝶酥原料。需要解一个组非线性微分方程。输入下列代码并 Shift+Enter. sol[v_, a0_, x0_, y0_, z0_] := NDSolve[{x'[t] == - v x[t] + y[t] z[t], y'[t] == -v y[t] + ( z[t] - a0) x[t], z'[t] == 1 - x[t] y[t], x[0] == x0, y[0] == y0, z[0] == z0}, {x, y, z}, {t, 0, 200}, MaxSteps -> Infinity]
焙制蝴蝶酥,并上色。输入下列代码并 Shift+Enter. ParametricPlot3D[ Evaluate[{x[t], y[t], z[t]} /. sol[0.8, 1.55, 0, 1, 0]], {t, 0, 200}, ColorFunction -> (ColorData["Rainbow"][#4] &), PlotStyle -> {Thick}, SphericalRegion -> True, ImageSize -> 500 {1, 1}, PlotRange -> {{-4, 5}, {-4, 4}, {-0.5, 10}}, Boxed -> False, Axes -> None, PerformanceGoal -> "Quality"]
此物仅用于画饼充饥。